US-CERT Feed

Update to Alert on Mitigating Microsoft Exchange Server Vulnerabilities

US-Cert Current Activity - Thu, 03/04/2021 - 4:08pm
Original release date: March 4, 2021

CISA is aware of threat actors using open source tools to search for vulnerable Microsoft Exchange Servers and advises entities to investigate for signs of a compromise from at least September 1, 2020. CISA has updated the Alert on the Microsoft Exchange server vulnerabilities with additional detailed mitigations. 
 
CISA encourages administrators to review the updated Alert and the Microsoft Security Update and apply the necessary updates as soon as possible or disconnect vulnerable Exchange servers from the internet until the necessary patch is made available.

This product is provided subject to this Notification and this Privacy & Use policy.

Categories: US-CERT Feed

Joint NSA and CISA Guidance on Strengthening Cyber Defense Through Protective DNS

US-Cert Current Activity - Thu, 03/04/2021 - 1:50pm
Original release date: March 4, 2021

The National Security Agency (NSA) and CISA have released a Joint Cybersecurity Information (CSI) sheet with guidance on selecting a protective Domain Name System (PDNS) service as a key defense against malicious cyber activity. Protective DNS can greatly reduce the effectiveness of ransomware, phishing, botnet, and malware campaigns by blocking known-malicious domains. Additionally organizations can use DNS query logs for incident response and threat hunting activities.

CISA encourages users and administrators to consider the benefits of using a protective DNS service and review NSA and CISA’s CSI sheet on Selecting a Protective DNS Service for more information.

This product is provided subject to this Notification and this Privacy & Use policy.

Categories: US-CERT Feed

Cisco Releases Security Updates

US-Cert Current Activity - Thu, 03/04/2021 - 11:13am
Original release date: March 4, 2021

Cisco has released security updates to address a vulnerability in multiple Cisco products. An attacker could exploit this vulnerability to cause a denial-of-service condition. For updates addressing lower severity vulnerabilities, see the Cisco Security Advisories page.

CISA encourages users and administrators to review Cisco Advisory cisco-sa-snort-ethernet-dos-HGXgJH8n and apply the necessary updates.

This product is provided subject to this Notification and this Privacy & Use policy.

Categories: US-CERT Feed

VMware Releases Security Update

US-Cert Current Activity - Thu, 03/04/2021 - 11:12am
Original release date: March 4, 2021

VMware has released a security update to address a vulnerability in View Planner. An attacker could exploit this vulnerability to take control of an affected system.

CISA encourages users and administrators to review VMware Security Advisory VMSA-2021-0003 and apply the necessary update.  

This product is provided subject to this Notification and this Privacy & Use policy.

Categories: US-CERT Feed

CISA Issues Emergency Directive and Alert on Microsoft Exchange Vulnerabilities

US-Cert Current Activity - Wed, 03/03/2021 - 3:14pm
Original release date: March 3, 2021

CISA has issued Emergency Directive (ED) 21-02 and Alert AA21-062A addressing critical vulnerabilities in Microsoft Exchange products. Successful exploitation of these vulnerabilities allows an attacker to access on-premises Exchange servers, enabling them to gain persistent system access and control of an enterprise network. 

CISA strongly recommends organizations examine their systems to detect any malicious activity detailed in Alert AA21-062A. Review the following resources for more information:

This product is provided subject to this Notification and this Privacy & Use policy.

Categories: US-CERT Feed

AA21-062A: Mitigate Microsoft Exchange Server Vulnerabilities

US-Cert Alerts - Wed, 03/03/2021 - 1:12pm
Original release date: March 3, 2021
Summary

Cybersecurity and Infrastructure Security (CISA) partners have observed active exploitation of vulnerabilities in Microsoft Exchange Server products. Successful exploitation of these vulnerabilities allows an unauthenticated attacker to execute arbitrary code on vulnerable Exchange Servers, enabling the attacker to gain persistent system access, as well as access to files and mailboxes on the server and to credentials stored on that system. Successful exploitation may additionally enable the attacker to compromise trust and identity in a vulnerable network. Microsoft released out-of-band patches to address vulnerabilities in Microsoft Exchange Server. The vulnerabilities impact on-premises Microsoft Exchange Servers and are not known to impact Exchange Online or Microsoft 365 (formerly O365) cloud email services.

This Alert includes both tactics, techniques and procedures (TTPs) and the indicators of compromise (IOCs) associated with this malicious activity. To secure against this threat, CISA recommends organizations examine their systems for the TTPs and use the IOCs to detect any malicious activity. If an organization discovers exploitation activity, they should assume network identity compromise and follow incident response procedures. If an organization finds no activity, they should apply available patches immediately and implement the mitigations in this Alert.

Click here for IOCs in STIX format.

Technical Details

Microsoft has released out-of-band security updates to address four vulnerabilities in Exchange Server:

  • CVE-2021-26855 allows an unauthenticated attacker to send arbitrary HTTP requests and authenticate as the Exchange Server. The vulnerability exploits the Exchange Control Panel (ECP) via a Server-Side Request Forgery (SSRF). This would also allow the attacker to gain access to mailboxes and read sensitive information.
  • CVE-2021-26857, CVE-2021-26858, and CVE-2021-27065 allow for remote code execution.  
    • CVE-2021-26858 and CVE-2021-27065 are similar post-authentication arbitrary write file vulnerabilities in Exchange. An attacker, authenticated either by using CVE-2021-26855 or via stolen admin credentials, could write a file to any path on the server.

    • CVE-2021-26857 is an insecure deserialization vulnerability in the Unified Messaging service. An attacker, authenticated either by using CVE-2021-26855 or via stolen admin credentials, could execute arbitrary code as SYSTEM on the Exchange Server.

  • To locate a possible compromise of these CVEs, we encourage you to read the Microsoft Advisory.

It is possible for an attacker, once authenticated to the Exchange server, to gain access to the Active Directory environment and download the Active Directory Database.

Tactics, Techniques and Procedures

The majority of the TTPs in this section are sourced from a blog post from Volexity, a third party cybersecurity firm. Note: the United States Government does not endorse any commercial product or service, including any subjects of analysis. Any reference to specific commercial products, processes, or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply their endorsement, recommendation, or favoring by the United States Government.

Volexity has observed the following files as targets of HTTP POST requests:

  • /owa/auth/Current/themes/resources/logon.css
  • /owa/auth/Current/themes/resources/owafont_ja.css
  • /owa/auth/Current/themes/resources/lgnbotl.gif
  • /owa/auth/Current/themes/resources/owafont_ko.css
  • /owa/auth/Current/themes/resources/SegoeUI-SemiBold.eot
  • /owa/auth/Current/themes/resources/SegoeUI-SemiLight.ttf
  • /owa/auth/Current/themes/resources/lgnbotl.gif

Administrators should search the ECP server logs for the following string (or something similar):

S:CMD=Set-OabVirtualDirectory.ExternalUrl='

The logs can be found at <exchange install path>\Logging\ECP\Server\.

To determine possible webshell activity, administrators should search for aspx files in the following paths:

  • \inetpub\wwwroot\aspnet_client\ (any .aspx file under this folder or sub folders)
  • \<exchange install path>\FrontEnd\HttpProxy\ecp\auth\ (any file besides TimeoutLogoff.aspx)
  • \<exchange install path>\FrontEnd\HttpProxy\owa\auth\ (any file or modified file that is not part of a standard install)
  • \<exchange install path>\FrontEnd\HttpProxy\owa\auth\Current\ (any aspx file in this folder or subfolders)
  • \<exchange install path>\FrontEnd\HttpProxy\owa\auth\<folder with version number>\ (any aspx file in this folder or subfolders)

Administrators should search in the /owa/auth/Current directory for the following non-standard web log user-agents. These agents may be useful for incident responders to look at to determine if further investigation is necessary.

These should not be taken as definitive IOCs:

  • DuckDuckBot/1.0;+(+http://duckduckgo.com/duckduckbot.html)
  • facebookexternalhit/1.1+(+http://www.facebook.com/externalhit_uatext.php)
  • Mozilla/5.0+(compatible;+Baiduspider/2.0;++http://www.baidu.com/search/spider.html)
  • Mozilla/5.0+(compatible;+Bingbot/2.0;++http://www.bing.com/bingbot.htm)
  • Mozilla/5.0+(compatible;+Googlebot/2.1;++http://www.google.com/bot.html
  • Mozilla/5.0+(compatible;+Konqueror/3.5;+Linux)+KHTML/3.5.5+(like+Gecko)+(Exabot-Thumbnails)
  • Mozilla/5.0+(compatible;+Yahoo!+Slurp;+http://help.yahoo.com/help/us/ysearch/slurp)
  • Mozilla/5.0+(compatible;+YandexBot/3.0;++http://yandex.com/bots)
  • Mozilla/5.0+(X11;+Linux+x86_64)+AppleWebKit/537.36+(KHTML,+like+Gecko)+Chrome/51.0.2704.103+Safari/537.36

Volexity observed these user-agents in conjunction with exploitation to /ecp/ URLs:

  • ExchangeServicesClient/0.0.0.0
  • python-requests/2.19.1
  • python-requests/2.25.1

These user-agents were also observed having connections to post-exploitation web-shell access:

  • antSword/v2.1
  • Googlebot/2.1+(+http://www.googlebot.com/bot.html)
  • Mozilla/5.0+(compatible;+Baiduspider/2.0;++http://www.baidu.com/search/spider.html)

As with the non-standard user-agents, responders can examine internet information services (IIS) logs from Exchange Servers to identify possible historical activity. Also, as with the non-standard user agents, these should not be taken as definitive IOCs:

  • POST /owa/auth/Current/
  • POST /ecp/default.flt
  • POST /ecp/main.css
  • POST /ecp/<single char>.js

Volexity has seen attackers leverage the following IP addresses. Although these are tied to virtual private servers (VPSs) servers and virtual private networks (VPNs), responders should investigate these IP addresses on their networks and act accordingly:

  • 103.77.192[.]219
  • 104.140.114[.]110
  • 104.250.191[.]110
  • 108.61.246[.]56
  • 149.28.14[.]163
  • 157.230.221[.]198
  • 167.99.168[.]251
  • 185.250.151[.]72
  • 192.81.208[.]169
  • 203.160.69[.]66
  • 211.56.98[.]146
  • 5.254.43[.]18
  • 5.2.69[.]14
  • 80.92.205[.]81
  • 91.192.103[.]43

Volexity has also provided the following YARA signatures that can be run within your network to assist in finding signs of a compromise.

1. rule webshell_aspx_simpleseesharp : Webshell Unclassified
{
    meta:
        author = “threatintel@volexity.com”
        date = “2021-03-01”
        description = “A simple ASPX Webshell that allows an attacker to write further files to disk.”
        hash = “893cd3583b49cb706b3e55ecb2ed0757b977a21f5c72e041392d1256f31166e2”
 
    strings:
        $header = “<%@ Page Language=\”C#\” %>”
        $body = “<% HttpPostedFile thisFile = Request.Files[0];thisFile.SaveAs(Path.Combine”
 
    condition:
        $header at 0 and
        $body and
        filesize < 1KB
}
 
2.
rule webshell_aspx_reGeorgTunnel : Webshell Commodity
{
    meta:
        author = “threatintel@volexity.com”
        date = “2021-03-01”
        description = “A variation on the reGeorg tunnel webshell”
        hash = “406b680edc9a1bb0e2c7c451c56904857848b5f15570401450b73b232ff38928”
        reference = “https://github.com/sensepost/reGeorg/blob/master/tunnel.aspx”
 
    strings:
        $s1 = “System.Net.Sockets”
        $s2 = “System.Text.Encoding.Default.GetString(Convert.FromBase64String(StrTr(Request.Headers.Get”
        // a bit more experimental
        $t1 = “.Split(‘|’)”
        $t2 = “Request.Headers.Get”
        $t3 = “.Substring(“
        $t4 = “new Socket(“
        $t5 = “IPAddress ip;”
 
    condition:
        all of ($s*) or
        all of ($t*)
}
 
3
rule webshell_aspx_sportsball : Webshell Unclassified
{
    meta:
        author = “threatintel@volexity.com”
        date = “2021-03-01”
        description = “The SPORTSBALL webshell allows attackers to upload files or execute commands on the system.”
        hash = “2fa06333188795110bba14a482020699a96f76fb1ceb80cbfa2df9d3008b5b0a”
 
    strings:
        $uniq1 = “HttpCookie newcook = new HttpCookie(\”fqrspt\”, HttpContext.Current.Request.Form”
        $uniq2 = “ZN2aDAB4rXsszEvCLrzgcvQ4oi5J1TuiRULlQbYwldE=”
 
        $var1 = “Result.InnerText = string.Empty;”
        $var2 = “newcook.Expires = DateTime.Now.AddDays(”
        $var3 = “System.Diagnostics.Process process = new System.Diagnostics.Process();”
        $var4 = “process.StandardInput.WriteLine(HttpContext.Current.Request.Form[\””
        $var5 = “else if (!string.IsNullOrEmpty(HttpContext.Current.Request.Form[\””
        $var6 = “<input type=\”submit\” value=\”Upload\” />”
 
    condition:
        any of ($uniq*) or
        all of ($var*)
}

A list of web shell hashes have also been provided by Microsoft:

  • b75f163ca9b9240bf4b37ad92bc7556b40a17e27c2b8ed5c8991385fe07d17d0
  • 097549cf7d0f76f0d99edf8b2d91c60977fd6a96e4b8c3c94b0b1733dc026d3e
  • 2b6f1ebb2208e93ade4a6424555d6a8341fd6d9f60c25e44afe11008f5c1aad1
  • 65149e036fff06026d80ac9ad4d156332822dc93142cf1a122b1841ec8de34b5
  • 511df0e2df9bfa5521b588cc4bb5f8c5a321801b803394ebc493db1ef3c78fa1
  • 4edc7770464a14f54d17f36dc9d0fe854f68b346b27b35a6f5839adf1f13f8ea
  • 811157f9c7003ba8d17b45eb3cf09bef2cecd2701cedb675274949296a6a183d
  • 1631a90eb5395c4e19c7dbcbf611bbe6444ff312eb7937e286e4637cb9e72944

Note: this is not an all-inclusive list of indicators of compromise and threat actors have been known to use short-term leased IP addresses that change very frequently. Organizations that do not locate any of the IOCs in this Alert within your network traffic, may nevertheless have been compromised. CISA recommendations following the guidance located in the Microsoft Advisory to check your servers for any signs of a compromise.  

Conduct Forensic Analysis

Should your organization see evidence of compromise, your incident response should begin with conducting forensic analysis to collect artifacts and perform triage. Please see the following list of recommendations on how to conduct forensic analysis using various tools.

Although the following free tools are not endorsed by the Federal Government, incident responders commonly use them to perform forensics.

While collecting artifacts to perform triage, use processes and tools that minimize the alteration of the data being collected and that minimize impact to the operating system itself.

Ideally, during data collection, store the data on removable/external media and, when possible, run the artifact collection tools from the same media.

Key artifacts for triage that should be collected:

  • Memory
  • All registry hives
  • All windows event logs
  • All web logs

Memory can be collected with a variety of open source tools (e.g., FTK Imager by AccessData, Ram Capture by Belkasoft).

Registry and Windows Event logs can be collected with a variety of open source tools as well (e.g., FTK_Imager, Kroll Artifact Parser And Extractor [KAPE]).

Web logs can also be collected with a variety of open source tools (e.g., FTK Imager).

Windows Artifact Collection Guide

Execute the following steps in order.

1) Download the latest FTK Imager from https://accessdata.com/product-download/.

  • Note: Ensure your review of and compliance with the applicable license associated with the product referenced, which can be found in the product’s User Guide. The United States Government does not endorse any commercial product or service, including any subjects of analysis. Any reference to specific commercial products, processes, or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply their endorsement, recommendation, or favoring by the United States Government.

2) Collect memory from live system using FTK Imager. See Memory Capture with FTK Imager.pdf for instructions. Note: Download and copy “FTK Imager” folder to an external drive. Run FTK Imager.exe from the FTK Imager folder from external drive. Wait until memory collect is complete before proceeding to step 2.

3) Collect important system artifacts using KAPE. See KAPE Collection Procedure. Note: Download KAPE from a separate system; do not download KAPE to the target system. Run KAPE from external drive.

4) Collect disk image using FTK Imager. See Live Image with FTK Imager.pdf for instructions. Note: Run FTK Imager.exe from the “FTK Imager” folder from external drive.

Memory Capture with FTK Imager

1) Open FTK Imager. Log into the system with Administrator privileges and launch “FTK Imager.”

2) Open “Capture Memory." Select “Capture Memory…” from the File menu.

Figure 1: FTK Imager – Capture Memory Command

3) Select Path and Filenames. On the window that appears, use the “Browse” button to identify the destination of the memory capture. Save the memory capture to an external device and not the main hard drive of the system. Doing so will prevent the saved file from overwriting any dataspace on the system.

  • Name the destination file with a descriptive name (i.e., hostname of the system).
  • Select the box “Include pagefile” and provide a name of the pagefile that is descriptive of the system.
  • Do not select “Create AD1 file.”

Figure 2: FTK Imager – Memory Capture

4) Capture Memory. Click on “Capture Memory” to begin the capture process. The process will take several minutes depending on the size of the pagefile and the amount of memory on the system.

Figure 3: FTK Imager – Capture Process

KAPE Collection Procedure [1]

1) Download KAPE from https://www.kroll.com/en/services/cyber-risk/investigate-and-respond/kroll-artifact-parser-extractor-kape.

2) Disable any antivirus or host protection mechanisms that prevent execution from removable media, or data loss prevention (DLP) mechanisms that restrict utilization of removable media.

  • Enable antivirus and host protection once this process is completed.

3) Unzip Kape.zip and run gkape.exe as admin from your removable media

4) Target source should be the drive on which the OS resides, typically C:.

5) Target destination should be an external drive folder, not the same drive as the Target source. If available, use an external hard drive or flash drive.

  • A KAPE execution with these parameters will typically produce output artifacts with a total size of 1-25 GB.
  • If you are going to be running KAPE on different machines and want to save to the same drive, ensure the Target destination folder is unique for each execution of KAPE.

6) Uncheck Flush checkbox (it is checked natively).

7) Check Add %d and Add %m checkboxes.

8) Select ALL checkboxes to ensure KAPE will target all available data that it is capable of targeting. This takes some time; use the down arrow and space bar to move through the list quickly.

9) Check Process VSCs checkbox.

10) Select Zip radio button and add Base name TargetOutput.

11) Ensure Deduplicate checkbox is checked (it is checked natively).

  • At the bottom you should now see a large Current command line, similar to:
.\kape.exe --tsource C: --tdest E:\%d%m --tflush --target !BasicCollection,!SANS_Triage,Avast,AviraAVLogs,Bitdefender,ComboFix,ESET,FSecure,HitmanPro,Malwarebytes, McAfee,McAfee_ePO,RogueKiller,SentinelOne,Sophos,SUPERAntiSpyware,Symantec_AV_Logs,TrendMicro,VIPRE, Webroot,WindowsDefender,Ammyy,AsperaConnect,BoxDrive,CiscoJabber,CloudStorage,ConfluenceLogs,Discord, Dropbox, Exchange,ExchangeClientAccess,ExchangeTransport,FileZilla,GoogleDrive,iTunesBackup,JavaWebCache,Kaseya,LogMeIn,Notepad++, OneDrive,OutlookPSTOST,ScreenConnect,Skype,TeamViewerLogs,TeraCopy,VNCLogs, Chrome,ChromeExtensions,Edge,Firefox,InternetExplorer,WebBrowsers,ApacheAccessLog,IISLogFiles,ManageEngineLogs, MSSQLErrorLog,NGINXLogs,PowerShellConsole,KapeTriage,MiniTimelineCollection,RemoteAdmin, VirtualDisks, Gigatribe,TorrentClients,Torrents,$Boot,$J,$LogFile,$MFT,$SDS,$T,Amcache,ApplicationEvents,BCD,CombinedLogs, EncapsulationLogging,EventLogs,EventLogs-RDP,EventTraceLogs, EvidenceOfExecution,FileSystem,GroupPolicy,LinuxOnWindowsProfileFiles,LnkFilesAndJumpLists,LogFiles,MemoryFiles, MOF,OfficeAutosave,OfficeDocumentCache,Prefetch,RDPCache,RDPLogs,RecentFileCache,Recycle, RecycleBin, RecycleBinContent,RecycleBinMetadata,RegistryHives,RegistryHivesSystem,RegistryHivesUser,ScheduledTasks,SDB, SignatureCatalog,SRUM,StartupInfo,Syscache,ThumbCache,USBDevicesLogs,WBEM,WER,WindowsFirewall,  WindowsIndexSearch,WindowsNotifcationsDB,WindowsTimeline,XPRestorePoints --vss --zip TargetOutput –gui
  • In the bottom right corner hit the Execute! Button.
  • Screenshot below shows gkape.exe during execution, you will also see a command window execute. Note: KAPE usually takes less than 20 minutes to complete on a workstation; if it is taking significantly longer there may be an issue.

Figure 4: gkape.exe screenshot

Mitigations

CISA strongly recommends organizations read Microsoft’s advisory and security blog post for more information on how to look for this malicious activity and apply critical patches as soon as possible.

If patching is not an immediate option, there are other mitigation options available. However, these options should only be used as a temporary solution, not a replacement for patching.  CISA recommends limiting or blocking external access to internet-facing Exchange Servers via the following:

  • Restrict untrusted connections to port 443, or set up a VPN to separate the Exchange Server from external access; note that this will not prevent an adversary from exploiting the vulnerability if the attacker is already in your network.
  • Block external access to on-premise Exchange:
    • Restrict external access to OWA URL: /owa/. 
    • Restrict external access to Exchange Admin Center (EAC) aka Exchange Control Panel (ECP) URL: /ecp/.

CISA would like to thank Microsoft and Volexity for their contributions to this alert.

RESOURCES

 

References Revisions
  • March 3, 2021: Initial Version

This product is provided subject to this Notification and this Privacy & Use policy.

Categories: US-CERT Feed

Google Releases Security Updates for Chrome

US-Cert Current Activity - Wed, 03/03/2021 - 12:10pm
Original release date: March 3, 2021

Google has released Chrome version 89.0.4389.72 for Windows, Mac, and Linux. This version addresses vulnerabilities that an attacker could exploit to take control of an affected system. 

CISA encourages users and administrators to review the Chrome Release Note and apply the necessary updates. 

This product is provided subject to this Notification and this Privacy & Use policy.

Categories: US-CERT Feed

Microsoft Releases Out-of-Band Security Updates for Exchange Server

US-Cert Current Activity - Tue, 03/02/2021 - 5:41pm
Original release date: March 2, 2021

Microsoft has released out-of-band security updates to address vulnerabilities affecting Microsoft Exchange Server 2013, 2016, and 2019. A remote attacker can exploit three remote code execution vulnerabilities—CVE-2021-26857, CVE-2021-26858, and CVE-2021-27065—to take control of an affected system and can exploit one vulnerability—CVE-2021-26855—to obtain access to sensitive information. These vulnerabilities are being actively exploited in the wild.

CISA encourages users and administrators to review the Microsoft blog post and apply the necessary updates or workarounds.

This product is provided subject to this Notification and this Privacy & Use policy.

Categories: US-CERT Feed

Apache Releases Security Advisory for Tomcat

US-Cert Current Activity - Tue, 03/02/2021 - 10:29am
Original release date: March 2, 2021

The Apache Software Foundation has released a security advisory to address a vulnerability in multiple versions of Apache Tomcat 9.0. An attacker could exploit this vulnerability to access sensitive information.

CISA encourages users and administrators to review the Apache security advisory for CVE-2021-25122 and upgrade to the appropriate version.

This product is provided subject to this Notification and this Privacy & Use policy.

Categories: US-CERT Feed

NSA Releases Guidance on Zero Trust Security Model

US-Cert Current Activity - Fri, 02/26/2021 - 8:47am
Original release date: February 26, 2021

The National Security Agency (NSA) has released Cybersecurity Information Sheet: Embracing a Zero Trust Security Model, which provides information about, and recommendations for, implementing Zero Trust within networks. The Zero Trust security model is a coordinated system management strategy that assumes breaches are inevitable or have already occurred.

CISA encourages administrators and organizations review NSA’s guidance on Embracing a Zero Trust Security Model to help secure sensitive data, systems, and services.

This product is provided subject to this Notification and this Privacy & Use policy.

Categories: US-CERT Feed

Cisco Releases Security Updates 

US-Cert Current Activity - Thu, 02/25/2021 - 7:08am
Original release date: February 25, 2021

Cisco has released security updates to address vulnerabilities in Cisco products. An attacker could exploit some of these vulnerabilities to take control of an affected system.
 
CISA encourages users and administrators to review the following Cisco Advisories and apply the necessary updates:

For updates addressing lower severity vulnerabilities, see the Cisco Security Advisories page.

This product is provided subject to this Notification and this Privacy & Use policy.

Categories: US-CERT Feed

Mozilla Releases Security Updates for Thunderbird, Firefox ESR, and Firefox

US-Cert Current Activity - Wed, 02/24/2021 - 10:54am
Original release date: February 24, 2021

Mozilla has released security updates to address multiple vulnerabilities in Thunderbird 78.8, Firefox ESR 78.8, and Firefox 86. An attacker could exploit these vulnerabilities to take control of an affected system.
 
CISA encourages users and administrators to review the Mozilla security advisories and apply the necessary updates.

This product is provided subject to this Notification and this Privacy & Use policy.

Categories: US-CERT Feed

VMware Releases Multiple Security Updates

US-Cert Current Activity - Wed, 02/24/2021 - 10:52am
Original release date: February 24, 2021

VMware has released security updates to address multiple vulnerabilities--CVE-2021-21972, CVE-2021-21973, CVE-2021-21974—ESXi, vCenter Server, and Cloud Foundation. A remote attacker could exploit some of these vulnerabilities to take control of an affected system.

CISA encourages users and administrators to review VMware Security Advisory VMSA-2021-0002 and apply the necessary updates.

This product is provided subject to this Notification and this Privacy & Use policy.

Categories: US-CERT Feed

CISA Releases Joint Cybersecurity Advisory on Exploitation of Accellion File Transfer Appliance

US-Cert Current Activity - Wed, 02/24/2021 - 9:00am
Original release date: February 24, 2021

The cybersecurity authorities of Australia, New Zealand, Singapore, the United Kingdom, and the United States have released Joint Cybersecurity Advisory AA21-055A: Exploitation of Accellion File Transfer Appliance. Cyber actors worldwide have exploited vulnerabilities in Accellion File Transfer Appliance to attack multiple federal, and state, local, tribal, and territorial government organizations as well as private industry organizations in the medical, legal, telecommunications, finance, and energy fields. In some instances, the attacker extorted money from victim organizations to prevent public release of information exfiltrated from a compromised Accellion appliance.

CISA encourages users and administrators to review AA21-055A: Exploitation of Accellion File Transfer Appliance and MAR-10325064-1.v1 – Accellion FTA for more information.

This product is provided subject to this Notification and this Privacy & Use policy.

Categories: US-CERT Feed

AA21-055A: Exploitation of Accellion File Transfer Appliance

US-Cert Alerts - Wed, 02/24/2021 - 9:00am
Original release date: February 24, 2021
Summary

This joint advisory is the result of a collaborative effort by the cybersecurity authorities of Australia,[1] New Zealand,[2] Singapore,[3] the United Kingdom,[4] and the United States.[5][6] These authorities are aware of cyber actors exploiting vulnerabilities in Accellion File Transfer Appliance (FTA).[7] This activity has impacted organizations globally, including those in Australia, New Zealand, Singapore, the United Kingdom, and the United States.

Worldwide, actors have exploited the vulnerabilities to attack multiple federal and state, local, tribal, and territorial (SLTT) government organizations as well as private industry organizations including those in the medical, legal, telecommunications, finance, and energy sectors. According to Accellion, this activity involves attackers leveraging four vulnerabilities to target FTA customers.[8] In one incident, an attack on an SLTT organization potentially included the breach of confidential organizational data. In some instances observed, the attacker has subsequently extorted money from victim organizations to prevent public release of information exfiltrated from the Accellion appliance.

This Joint Cybersecurity Advisory provides indicators of compromise (IOCs) and recommended mitigations for this malicious activity. For a downloadable copy of IOCs, see: AA21-055A.stix and MAR-10325064-1.v1.stix.

Click here for a PDF version of this report.

Technical Details

Accellion FTA is a file transfer application that is used to share files. In mid-December 2020, Accellion was made aware of a zero-day vulnerability in Accellion FTA and released a patch on December 23, 2020. Since then, Accellion has identified cyber actors targeting FTA customers by leveraging the following additional vulnerabilities.

  • CVE-2021-27101 – Structured Query Language (SQL) injection via a crafted HOST header (affects FTA 9_12_370 and earlier)
  • CVE-2021-27102 – Operating system command execution via a local web service call (affects FTA versions 9_12_411 and earlier)
  • CVE-2021-27103 – Server-side request forgery via a crafted POST request (affects FTA 9_12_411 and earlier)
  • CVE-2021-27104 – Operating system command execution via a crafted POST request (affects FTA 9_12_370 and earlier)

One of the exploited vulnerabilities (CVE-2021-27101) is an SQL injection vulnerability that allows an unauthenticated user to run remote commands on targeted devices. Actors have exploited this vulnerability to deploy a webshell on compromised systems. The webshell is located on the target system in the file /home/httpd/html/about.html or /home/seos/courier/about.html. The webshell allows the attacker to send commands to targeted devices, exfiltrate data, and clean up logs. The clean-up functionality of the webshell helps evade detection and analysis during post incident response. The Apache /var/opt/cache/rewrite.log file may also contain the following evidence of compromise:

  • [.'))union(select(c_value)from(t_global)where(t_global.c_param)=('w1'))] (1) pass through /courier/document_root.html
  • [.'))union(select(reverse(c_value))from(t_global)where(t_global.c_param)=('w1'))] (1) pass through /courier/document_root.html
  • ['))union(select(loc_id)from(net1.servers)where(proximity)=(0))] (1) pass through /courier/document_root.html

These entries are followed shortly by a pass-through request to sftp_account_edit.php. The entries are the SQL injection attempt indicating an attempt at exploitation of the HTTP header parameter HTTP_HOST.

Apache access logging shows successful file listings and file exfiltration:

  • “GET /courier/about.html?aid=1000 HTTP/1.1” 200 {Response size}
  • “GET /courier/about.htmldwn={Encrypted Path}&fn={encrypted file name} HTTP/1.1” 200 {Response size}

When the clean-up function is run, it modifies archived Apache access logs /var/opt/apache/c1s1-access_log.*.gz and replaces the file contents with the following string:

      Binary file (standard input) matches

In two incidents, the Cybersecurity and Infrastructure Security Agency (CISA) observed a large amount of data transferred over port 443 from federal agency IP addresses to 194.88.104[.]24. In one incident, the Cyber Security Agency of Singapore observed multiple TCP sessions with IP address 45.135.229[.]179.

Organizations are encouraged to investigate the IOCs outlined in this advisory and in [AR21-055A]. If an Accellion FTA appears compromised, organizations can get an indication of the exfiltrated files by obtaining a list of file-last-accessed events for the target files of the symlinks located in the /home/seos/apps/1000/ folder over the period of malicious activity. This information is only indicative and may not be a comprehensive identifier of all exfiltrated files.

Mitigations

Organizations with Accellion FTA should:

  • Temporarily isolate or block internet access to and from systems hosting the software.
  • Assess the system for evidence of malicious activity including the IOCs, and obtain a snapshot or forensic disk image of the system for subsequent investigation.
  • If malicious activity is identified, obtain a snapshot or forensic disk image of the system for subsequent investigation, then:
    • Consider conducting an audit of Accellion FTA user accounts for any unauthorized changes, and consider resetting user passwords.
    • Reset any security tokens on the system, including the “W1” encryption token, which may have been exposed through SQL injection.
  • Update Accellion FTA to version FTA_9_12_432 or later.
  • Evaluate potential solutions for migration to a supported file-sharing platform after completing appropriate testing.
    • Accellion has announced that FTA will reach end-of-life (EOL) on April 30, 2021.[9] Replacing software and firmware/hardware before it reaches EOL significantly reduces risks and costs.

Additional general best practices include:

  • Deploying automated software update tools to ensure that third-party software on all systems is running the most recent security updates provided by the software vendor.
  • Only using up-to-date and trusted third-party components for the software developed by the organization.
  • Adding additional security controls to prevent the access from unauthenticated sources.
Resources References Revisions
  • February 24, 2021: Initial Version

This product is provided subject to this Notification and this Privacy & Use policy.

Categories: US-CERT Feed

SonicWall Releases Additional Patches

US-Cert Current Activity - Tue, 02/23/2021 - 11:08am
Original release date: February 23, 2021

SonicWall has released firmware patches for SMA 100 series products in an update to its previous alert from February 3, 2021. A remote attacker could exploit a vulnerability in versions of SMA 10 prior to 10.2.0.5-29sv to take control of an affected system.

CISA encourages users and administrators to review the updated SonicWall alert and apply the necessary patches as soon as possible.

This product is provided subject to this Notification and this Privacy & Use policy.

Categories: US-CERT Feed

Cisco Releases Security Updates for AnyConnect Secure Mobility Client

US-Cert Current Activity - Thu, 02/18/2021 - 10:29am
Original release date: February 18, 2021

Cisco has released security updates to address a vulnerability in Cisco AnyConnect Secure Mobility Client. An attacker could exploit this vulnerability to take control of an affected system.

CISA encourages users and administrators to review Cisco Security Advisory cisco-sa-anyconnect-dll-hijac-JrcTOQMC and apply the necessary updates.

This product is provided subject to this Notification and this Privacy & Use policy.

Categories: US-CERT Feed

Google Releases Security Updates for Chrome

US-Cert Current Activity - Wed, 02/17/2021 - 2:19pm
Original release date: February 17, 2021

Google has released Chrome version 88.0.4324.182 for Windows, Mac, and Linux. This version addresses vulnerabilities that an attacker could exploit to take control of an affected system.

CISA encourages users and administrators to review the Chrome Release and apply the necessary updates.

This product is provided subject to this Notification and this Privacy & Use policy.

Categories: US-CERT Feed

North Korean Malicious Cyber Activity: AppleJeus

US-Cert Current Activity - Wed, 02/17/2021 - 11:00am
Original release date: February 17, 2021

CISA, the Federal Bureau of Investigation, and the Department of the Treasury have released a Joint Cybersecurity Advisory and seven Malware Analysis Reports (MARs) on the North Korean government’s dissemination of malware that facilitates the theft of cryptocurrency—referred to by the U.S. Government as “AppleJeus.”

The U.S. Government refers to malicious cyber activity by the North Korean government as HIDDEN COBRA.

CISA encourages users and administrators to review the following resources for more information.

This product is provided subject to this Notification and this Privacy & Use policy.

Categories: US-CERT Feed

AA21-048A: AppleJeus: Analysis of North Korea’s Cryptocurrency Malware

US-Cert Alerts - Wed, 02/17/2021 - 11:00am
Original release date: February 17, 2021
Summary

This Advisory uses the MITRE Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK®) framework. See the ATT&CK for Enterprise for all referenced threat actor tactics and techniques.

This joint advisory is the result of analytic efforts among the Federal Bureau of Investigation (FBI), the Cybersecurity and Infrastructure Security Agency (CISA), and the Department of Treasury (Treasury) to highlight the cyber threat to cryptocurrency posed by North Korea, formally known as the Democratic People’s Republic of Korea (DPRK), and provide mitigation recommendations. Working with U.S. government partners, FBI, CISA, and Treasury assess that Lazarus Group—which these agencies attribute to North Korean state-sponsored advanced persistent threat (APT) actors—is targeting individuals and companies, including cryptocurrency exchanges and financial service companies, through the dissemination of cryptocurrency trading applications that have been modified to include malware that facilitates theft of cryptocurrency.

These cyber actors have targeted organizations for cryptocurrency theft in over 30 countries during the past year alone. It is likely that these actors view modified cryptocurrency trading applications as a means to circumvent international sanctions on North Korea—the applications enable them to gain entry into companies that conduct cryptocurrency transactions and steal cryptocurrency from victim accounts. As highlighted in FASTCash 2.0: North Korea's BeagleBoyz Robbing Banks and Guidance on the North Korean Cyber Threat, North Korea’s state-sponsored cyber actors are targeting cryptocurrency exchanges and accounts to steal and launder hundreds of millions of dollars in cryptocurrency.[1][2][3] The U.S. Government refers to malicious cyber activity by the North Korean government as HIDDEN COBRA. For more information on HIDDEN COBRA activity, visit https://www.us-cert.cisa.gov/northkorea.

The U.S. Government has identified malware and indicators of compromise (IOCs) used by the North Korean government to facilitate cryptocurrency thefts; the cybersecurity community refers to this activity as “AppleJeus.” This report catalogues AppleJeus malware in detail. North Korea has used AppleJeus malware posing as cryptocurrency trading platforms since at least 2018. In most instances, the malicious application—seen on both Windows and Mac operating systems—appears to be from a legitimate cryptocurrency trading company, thus fooling individuals into downloading it as a third-party application from a website that seems legitimate. In addition to infecting victims through legitimate-looking websites, HIDDEN COBRA actors also use phishing, social networking, and social engineering techniques to lure users into downloading the malware.

Refer to the following Malware Analysis Reports (MARs) for full technical details of AppleJeus malware and associated IOCs.

Click here for a PDF version of this report.

Technical Details

The North Korean government has used multiple versions of AppleJeus since the malware was initially discovered in 2018. This section outlines seven of the versions below. The MARs listed above provide further technical details of these versions. Initially, HIDDEN COBRA actors used websites that appeared to host legitimate cryptocurrency trading platforms to infect victims with AppleJeus; however, these actors are now also using other initial infection vectors, such as phishing, social networking, and social engineering techniques, to get users to download the malware.

Targeted Nations

HIDDEN COBRA actors have targeted institutions with AppleJeus malware in several sectors, including energy, finance, government, industry, technology, and telecommunications. Since January 2020, the threat actors have targeted these sectors in the following countries: Argentina, Australia, Belgium, Brazil, Canada, China, Denmark, Estonia, Germany, Hong Kong, Hungary, India, Ireland, Israel, Italy, Japan, Luxembourg, Malta, the Netherlands, New Zealand, Poland, Russia, Saudi Arabia, Singapore, Slovenia, South Korea, Spain, Sweden, Turkey, the United Kingdom, Ukraine, and the United States (figure 1).

 


 
Figure 1: Countries targeted with AppleJeus by HIDDEN COBRA threat actors since 2020

AppleJeus Versions Note

The version numbers used for headings in this document correspond to the order the AppleJeus campaigns were identified in open source or through other investigative means. These versions may or may not be in the correct order to develop or deploy the AppleJeus campaigns.

AppleJeus Version 1: Celas Trade Pro Introduction and Infrastructure

In August 2018, open-source reporting disclosed information about a trojanized version of a legitimate cryptocurrency trading application on an undisclosed victim’s computer. The malicious program, known as Celas Trade Pro, was a modified version of the benign Q.T. Bitcoin Trader application. This incident led to the victim company being infected with a Remote Administration Tool (RAT) known as FALLCHILL, which was attributed to North Korea (HIDDEN COBRA) by the U.S. Government. FALLCHILL is a fully functional RAT with multiple commands that the adversary can issue from a command and control (C2) server to infected systems via various proxies. FALLCHILL typically infects a system as a file dropped by other HIDDEN COBRA malware (Develop Capabilities: Malware [T1587.001]). Because of this, additional HIDDEN COBRA malware may be present on systems compromised with FALLCHILL.[4]

Further research revealed that a phishing email from a Celas LLC company (Phishing: Spearphishing Link [T1566.002]) recommended the trojanized cryptocurrency trading application to victims. The email provided a link to the Celas’ website, celasllc[.]com (Acquire Infrastructure: Domain [T1583.001]), where the victim could download a Windows or macOS version of the trojanized application.

The celasllc[.]com domain resolved to the following Internet Protocol (IP) addresses from May 29, 2018, to January 23, 2021.

  • 45.199.63[.]220
  • 107.187.66[.]103
  • 145.249.106[.]19
  • 175.29.32[.]160
  • 185.142.236[.]213
  • 185.181.104[.]82
  • 198.251.83[.]27
  • 208.91.197[.]46
  • 209.99.64[.]18

The celasllc[.]com domain had a valid Sectigo (previously known as Comodo) Secure Sockets Layer (SSL) certificate (Obtain Capabilities: Digital Certificates [T1588.004]). The SSL certificate was “Domain Control Validated,” a weak security verification level that does not require validation of the owner’s identity or the actual business’s existence.

Celas Trade Pro Application Analysis Windows Program

The Windows version of the malicious Celas Trade Pro application is an MSI Installer (.msi). The MSI Installer installation package comprises a software component and an application programming interface (API) that Microsoft uses for the installation, maintenance, and removal of software. The installer looks legitimate and is signed by a valid Sectigo certificate that was purchased by the same user as the SSL certificate for celasllc[.]com (Obtain Capabilities: Code Signing Certificates [T1588.003]). The MSI Installer asks the victim for administrative privileges to run (User Execution: Malicious File [T1204.002]).

Once permission is granted, the threat actor is able to run the program with elevated privileges (Abuse Elevation Control Mechanism [T1548]) and MSI executes the following actions.

  • Installs CelasTradePro.exe in folder C:\Program Files (x86)\CelasTradePro
  • Installs Updater.exe in folder C:\Program Files (x86)\CelasTradePro
  • Runs Updater.exe with the CheckUpdate parameters

The CelasTradePro.exe program asks for the user’s exchange and loads a legitimate-looking cryptocurrency trading platform—very similar to the benign Q.T. Bitcoin Trader—that exhibits no signs of malicious activity.

The Updater.exe program has the same program icon as CelasTradePro.exe. When run, it checks for the CheckUpdate parameter, collects the victim’s host information (System Owner/User Discovery [T1033]), encrypts the collected information with a hardcoded XOR encryption, and sends information to a C2 website (Exfiltration Over C2 Channel [T1041]).

macOS X Program

The macOS version of the malicious application is a DMG Installer that has a disk image format that Apple commonly uses to distribute software over the internet. The installer looks legitimate and has a valid digital signature from Sectigo (Obtain Capabilities: Digital Certificates [T1588.004]). It has very similar functionality to the Windows version. The installer executes the following actions.

  • Installs CelasTradePro in folder /Applications/CelasTradePro.app/Contents/MacOS/
  • Installs Updater in folder /Applications/CelasTradePro.app/Contents/MacOS
  • Executes a postinstall script
    • Moves .com.celastradepro.plist to folder LaunchDaemons
    • Runs Updater with the CheckUpdate parameter

CelasTradePro asks for the user’s exchange and loads a legitimate-looking cryptocurrency trading platform—very similar to the benign Q.T. Bitcoin Trader—that exhibits no signs of malicious activity.

Updater checks for the CheckUpdate parameter and, when found, it collects the victim’s host information (System Owner/User Discovery [T1033]), encrypts the collected information with a hardcoded XOR key before exfiltration, and sends the encrypted information to a C2 website (Exfiltration Over C2 Channel [T1041]). This process helps the adversary obtain persistence on a victim’s network.

The postinstall script is a sequence of instructions that runs after successfully installing an application (Command and Scripting Interpreter: AppleScript [T1059.002]). This script moves property list (plist) file .com.celastradepro.plist from the installer package to the LaunchDaemons folder (Scheduled Task/Job: Launchd [T1053.004]). The leading “.” makes it unlisted in the Finder app or default Terminal directory listing (Hide Artifacts: Hidden Files and Directories [T1564.001]). Once in the folder, this property list (plist) file will launch the Updater program with the CheckUpdate parameter on system load as Root for every user. Because the LaunchDaemon will not run automatically after the plist file is moved, the postinstall script launches the Updater program with the CheckUpdate parameter and runs it in the background (Create or Modify System Process: Launch Daemon [T1543.004]).

Payload

After a cybersecurity company published a report detailing the above programs and their malicious extras, the website was no longer accessible. Since this site was the C2 server, the payload cannot be confirmed. The cybersecurity company that published the report states the payload was an encrypted and obfuscated binary (Obfuscated Files or Information [T1027]), which eventually drops FALLCHILL onto the machine and installs it as a service (Create or Modify System Process: Windows Service [T1543.003]). FALLCHILL malware uses an RC4 encryption algorithm with a 16-byte key to protect its communications (Encrypted Channel: Symmetric Cryptography [T1573.001]). The key employed in these versions has also been used in a previous version of FALLCHILL.[5][6]

For more details on AppleJeus Version 1: Celas Trade Pro, see MAR-10322463-1.v1.

AppleJeus Version 2: JMT Trading Introduction and Infrastructure

In October 2019, a cybersecurity company identified a new version of the AppleJeus malware—JMT Trading—thanks to its many similarities to the original AppleJeus malware. Again, the malware was in the form of a cryptocurrency trading application, which a legitimate-looking company, called JMT Trading, marketed and distributed on their website, jmttrading[.]org (Acquire Infrastructure: Domain [T1583.001]). This website contained a “Download from GitHub” button, which linked to JMT Trading’s GitHub page (Acquire Infrastructure: Web Services [T1583.006]), where Windows and macOS X versions of the JMT Trader application were available for download (Develop Capabilities: Malware [T1587.001]). The GitHub page also included .zip and tar.gz files containing the source code.

The jmttrading[.]org domain resolved to the following IP addresses from October 15, 2016, to January 22, 2021.

  • 45.33.2[.]79
  • 45.33.23[.]183
  • 45.56.79[.]23
  • 45.79.19[.]196
  • 96.126.123[.]244
  • 146.112.61[.]107
  • 184.168.221[.]40
  • 184.168.221[.]57
  • 198.187.29[.]20
  • 198.54.117[.]197
  • 198.54.117[.]198
  • 198.54.117[.]199
  • 198.54.117[.]200
  • 198.58.118[.]167

The jmttrading[.]org domain had a valid Sectigo SSL certificate (Obtain Capabilities: Digital Certificates [T1588.004]). The SSL certificate was “Domain Control Validated,” a weak security verification level that does not require validation of the owner’s identity or the actual business’s existence. The current SSL certificate was issued by Let’s Encrypt.

JMT Trading Application Analysis Windows Program

The Windows version of the malicious cryptocurrency application is an MSI Installer. The installer looks legitimate and has a valid digital signature from Sectigo (Obtain Capabilities: Digital Certificates [T1588.004]). The signature was signed with a code signing certificate purchased by the same user as the SSL certificate for jmttrading[.]org (Obtain Capabilities: Code Signing Certificates [T1588.003]). The MSI Installer asks the victim for administrative privileges to run (User Execution: Malicious File [T1204.002]).

Once permission is granted, the MSI executes the following actions.

  • Installs JMTTrader.exe in folder C:\Program Files (x86)\JMTTrader
  • Installs CrashReporter.exe in folder C:\Users\<username>\AppData\Roaming\JMTTrader
  • Runs CrashReporter.exe with the Maintain parameter

The JMTTrader.exe program asks for the user’s exchange and loads a legitimate-looking cryptocurrency trading platform—very similar to CelasTradePro.exe and the benign Q.T. Bitcoin Trader—that exhibits no signs of malicious activity.

The program CrashReporter.exe is heavily obfuscated with the ADVObfuscation library, renamed “snowman” (Obfuscated Files or Information [T1027]). When run, it checks for the Maintain parameter and collects the victim’s host information (System Owner/User Discovery [T1033]), encrypts the collected information with a hardcoded XOR key before exfiltration, and sends the encrypted information to a C2 website (Exfiltration Over C2 Channel [T1041]). The program also creates a scheduled SYSTEM task, named JMTCrashReporter, which runs CrashReporter.exe with the Maintain parameter at any user’s login (Scheduled Task/Job: Scheduled Task [T1053.005]).

macOS X Program

The macOS version of the malicious application is a DMG Installer. The installer looks legitimate and has very similar functionality to the Windows version, but it does not have a digital certificate and will warn the user of that before installation. The installer executes the following actions.

  • Installs JMTTrader in folder /Applications/JMTTrader.app/Contents/MacOS/
  • Installs .CrashReporter in folder /Applications/JMTTrader.app/Contents/Resources/
    • Note: the leading “.” makes it unlisted in the Finder app or default Terminal directory listing.
  • Executes a postinstall script
    • Moves .com.jmttrading.plist to folder LaunchDaemons
    • Changes the file permissions on the plist
    • Runs CrashReporter with the Maintain parameter
    • Moves .CrashReporter to folder /Library/JMTTrader/CrashReporter
    • Makes .CrashReporter executable

The JMTTrader program asks for the user’s exchange and loads a legitimate-looking cryptocurrency trading platform—very similar to CelasTradePro and the benign Q.T. Bitcoin Trader—that exhibits no signs of malicious activity.

The CrashReporter program checks for the Maintain parameter and is not obfuscated. This lack of obfuscation makes it easier to determine the program’s functionality in detail. When it finds the Maintain parameter, it collects the victim’s host information (System Owner/User Discovery [T1033]), encrypts the collected information with a hardcoded XOR key before exfiltration, and sends the encrypted information to a C2 website (Exfiltration Over C2 Channel [T1041]).

The postinstall script has similar functionality to the one used by CelasTradePro, but it has a few additional features (Command and Scripting Interpreter: AppleScript [T1059.002]). It moves the property list (plist) file .com.jmttrading.plist from the Installer package to the LaunchDaemons folder (Scheduled Task/Job: Launchd [T1053.004]), but also changes the file permissions on the plist file. Once in the folder, this property list (plist) file will launch the CrashReporter program with the Maintain parameter on system load as Root for every user. Also, the postinstall script moves the .CrashReporter program to a new location /Library/JMTTrader/CrashReporter and makes it executable. Because the LaunchDaemon will not run automatically after the plist file is moved, the postinstall script launches CrashReporter with the Maintain parameter and runs it in the background (Create or Modify System Process: Launch Daemon [T1543.004]).

Payload

Soon after the cybersecurity company tweeted about JMT Trader on October 11, 2019, the files on GitHub were updated to clean, non-malicious installers. Then on October 13, 2019, a different cybersecurity company published an article detailing the macOS X JMT Trader, and soon after, the C2 beastgoc[.]com website went offline. There is not a confirmed sample of the payload to analyze at this point.

For more details on AppleJeus Version 2: JMT Trading, see MAR-10322463-2.v1.

AppleJeus Version 3: Union Crypto Introduction and Infrastructure

In December 2019, another version of the AppleJeus malware was identified on Twitter by a cybersecurity company based on many similarities to the original AppleJeus malware. Again, the malware was in the form of a cryptocurrency trading application, which was marketed and distributed by a legitimate-looking company, called Union Crypto, on their website, unioncrypto[.]vip (Acquire Infrastructure: Domain [T1583.001]). Although this website is no longer available, a cybersecurity researcher discovered a download link, https://www.unioncrypto[.]vip/download/W6c2dq8By7luMhCmya2v97YeN, recorded on VirusTotal for the macOS X version of UnionCryptoTrader. In contrast, open-source reporting stated that the Windows version might have been downloaded via instant messaging service Telegram, as it was found in a “Telegram Downloads” folder on an unnamed victim.[7]

The unioncrypto[.]vip domain resolved to the following IP addresses from June 5, 2019, to July 15, 2020.

  • 104.168.167[.]16
  • 198.54.117[.]197
  • 198.54.117[.]198
  • 198.54.117[.]199
  • 198.54.117[.]200

The domain unioncrypto[.]vip had a valid Sectigo SSL certificate (Obtain Capabilities: Digital Certificates [T1588.004]). The SSL certificate was “Domain Control Validated,” a weak security verification level that does not require validation of the owner’s identity or the actual business’s existence.

Union Crypto Trader Application Analysis Windows Program

The Windows version of the malicious cryptocurrency application is a Windows executable (.exe) (User Execution: Malicious File [T1204.002]), which acts as an installer that extracts a temporary MSI Installer.

The Windows program executes the following actions.

  • Extracts UnionCryptoTrader.msi to folder C:\Users\<username>\AppData\Local\Temp\{82E4B719-90F74BD1-9CF1-56CD777E0C42}
  • Runs UnionCryptoUpdater.msi
    • Installs UnionCryptoTrader.exe in folder C:\Program Files\UnionCryptoTrader
    • Installs UnionCryptoUpdater.exe in folder C:\Users\<username>\AppData\Local\UnionCryptoTrader
  • Deletes UnionCryptoUpdater.msi
  • Runs UnionCryptoUpdater.exe

The program UnionCryptoTrader.exe loads a legitimate-looking cryptocurrency arbitrage application—defined as “the simultaneous buying and selling of securities, currency, or commodities in different markets or in derivative forms to take advantage of differing prices for the same asset”—which exhibits no signs of malicious activity. This application is very similar to another cryptocurrency arbitrage application known as Blackbird Bitcoin Arbitrage.[8]

The program UnionCryptoUpdater.exe first installs itself as a service (Create or Modify System Process: Windows Service [T1543.003]), which will automatically start when any user logs on (Boot or Logon Autostart Execution [T1547]). The service is installed with a description stating it “Automatically installs updates for Union Crypto Trader.” When launched, it collects the victim’s host information (System Owner/User Discovery [T1033]), combines the information in a string that is MD5 hashed and stored in the auth_signature variable before exfiltration, and sends it to a C2 website (Exfiltration Over C2 Channel [T1041]).

macOS X Program

The macOS version of the malicious application is a DMG Installer. The installer looks legitimate and has very similar functionality to the Windows version, but it does not have a digital certificate and will warn the user of that before installation. The installer executes the following actions.

  • Installs UnionCryptoTrader in folder /Applications/UnionCryptoTrader.app/Contents/MacOS/
  • Installs .unioncryptoupdater in folder /Applications/UnionCryptoTrader.app/Contents/Resources/
    • Note: the leading “.” makes it unlisted in the Finder app or default Terminal directory listing
  • Executes a postinstall script
    • Moves .vip.unioncrypto.plist to folder LaunchDaemons
    • Changes the file permissions on the plist to Root
    • Runs unioncryptoupdater
    • Moves .unioncryptoupdater to folder /Library/UnionCrypto/unioncryptoupdater
    • Makes .unioncryptoupdater executable

The UnionCryptoTrader program loads a legitimate-looking cryptocurrency arbitrage application, which exhibits no signs of malicious activity. The application is very similar to another cryptocurrency arbitrage application known as Blackbird Bitcoin Arbitrage.

The .unioncryptoupdater program is signed ad-hoc, meaning it is not signed with a valid code-signing identity. When launched, it collects the victim’s host information (System Owner/User Discovery [T1033]), combines the information in a string that is MD5 hashed and stored in the auth_signature variable before exfiltration, and sends it to a C2 website (Exfiltration Over C2 Channel [T1041]).

The postinstall script has similar functionality to the one used by JMT Trading (Command and Scripting Interpreter: AppleScript [T1059.002]). It moves the property list (plist) file .vip.unioncrypto.plist from the Installer package to the LaunchDaemons folder (Scheduled Task/Job: Launchd [T1053.004]), but also changes the file permissions on the plist file to Root. Once in the folder, this property list (plist) file will launch the .unioncryptoupdater on system load as Root for every user. The postinstall script moves the .unioncryptoupdater program to a new location /Library/UnionCrypto/unioncryptoupdater and makes it executable. Because the LaunchDaemon will not run automatically after the plist file is moved, the postinstall script launches .unioncryptoupdater and runs it in the background (Create or Modify System Process: Launch Daemon [T1543.004]).

Payload

The payload for the Windows malware is a Windows Dynamic-Link-Library. UnionCryptoUpdater.exe does not immediately download the stage 2 malware but instead downloads it after a time specified by the C2 server. This delay could be implemented to prevent researchers from directly obtaining the stage 2 malware.

The macOS X malware’s payload could not be downloaded, as the C2 server is no longer accessible. Additionally, none of the open-source reporting for this sample contained copies of the macOS X payload. The macOS X payload is likely similar in functionality to the Windows stage 2 detailed above.

For more details on AppleJeus Version 3: Union Crypto, see MAR-10322463-3.v1.

Commonalities between Celas Trade Pro, JMT Trading, and Union Crypto Hardcoded Values

In each AppleJeus version, there are hardcoded values used for encryption or to create a signature when combined with the time (table 1).

Table 1: AppleJeus hardcoded values and uses

AppleJeus Version Value Use 1: Celas Trade Pro Moz&Wie;#t/6T!2y XOR encryption to send data 1: Celas Trade Pro W29ab@ad%Df324V$Yd RC4 decryption 2: JMT Trader Windows X,%`PMk--Jj8s+6=15:20:11 XOR encryption to send data 2: JMT Trader OSX X,%`PMk--Jj8s+6=\x02 XOR encryption to send data 3: Union Crypto Trader 12GWAPCT1F0I1S14 Combined with time for signature

 

The Union Crypto Trader and Celas LLC (XOR) values are 16 bytes in length. For JMT Trader, the first 16 bytes of the Windows and macOS X values are identical, and the additional bytes are in a time format for the Windows sample. The structure of a 16-byte value combined with the time is also used in Union Crypto Trader to create the auth_signature.

As mentioned, FALLCHILL was reported as the final payload for Celas Trade Pro. All FALLCHILL samples use 16-byte hardcoded RC4 keys for sending data, similar to the 16-byte keys in the AppleJeus samples.

Open-Source Cryptocurrency Applications

All three AppleJeus samples are bundled with modified copies of legitimate cryptocurrency applications and can be used as originally designed to trade cryptocurrency. Both Celas LLC and JMT Trader modified the same cryptocurrency application, Q.T. Bitcoin Trader; Union Crypto Trader modified the Blackbird Bitcoin Arbitrage application.

Postinstall Scripts, Property List Files, and LaunchDaemons

The macOS X samples of all three AppleJeus versions contain postinstall scripts with similar logic. The Celas LLC postinstall script only moves the plist file to a new location and launches Updater with the CheckUpdate parameter in the background. The JMT Trader and Union Crypto Trader also perform these actions and have identical functionality. The additional actions performed by both postinstall scripts are to change the file permissions on the plist, make a new directory in the /Library folder, move CrashReporter or UnionCryptoUpdater to the newly created folder, and make them executable.

The plist files for all three AppleJeus files have identical functionality. They only differ in the files’ names and one default comment that was not removed from the Celas LLC plist. As the logic and functionality of the postinstall scripts and plist files are almost identical, the LaunchDaemons created also function the same.

They will all launch the secondary executable as Root on system load for every user.

AppleJeus Version 4: Kupay Wallet Introduction and Infrastructure

On March 13, 2020, a new version of the AppleJeus malware was identified. The malware was marketed and distributed by a legitimate-looking company, called Kupay Wallet, on their website kupaywallet[.]com (Acquire Infrastructure: Domain [T1583.001]).

The domain www.kupaywallet[.]com resolved to IP address 104.200.67[.]96 from March 20, 2020, to January 16, 2021. CrownCloud US, LLC controlled the IP address (autonomous system number [ASN] 8100), and is located in New York, NY.

The domain www.kupaywallet[.]com had a valid Sectigo SSL certificate (Obtain Capabilities: Digital Certificates [T1588.004]). The SSL certificate was “Domain Control Validated,” a weak security verification level that does not require validation of the owner’s identity or the actual business’s existence.

Kupay Wallet Application Analysis Windows Program

The Windows version of the malicious cryptocurrency application is an MSI Installer. The MSI executes the following actions.

  • Installs Kupay.exe in folder C:\Program Files (x86)\Kupay
  • Installs KupayUpgrade.exe in folder C:\Users\<username>\AppData\Roaming\KupaySupport
  • Runs KupayUpgrade.exe

The program Kupay.exe loads a legitimate-looking cryptocurrency wallet platform, which exhibits no signs of malicious activity and is very similar to an open-source platform known as Copay, distributed by Atlanta-based company BitPay.

The program KupayUpgrade.exe first installs itself as a service (Create or Modify System Process: Windows Service [T1543.003]), which will automatically start when any user logs on (Boot or Logon Autostart Execution [T1547]). The service is installed with a description stating it is an “Automatic Kupay Upgrade.” When launched, it collects the victim’s host information (System Owner/User Discovery [T1033]), combines the information in strings before exfiltration, and sends it to a C2 website (Exfiltration Over C2 Channel [T1041]).

macOS X Program

The macOS version of the malicious application is a DMG Installer. The installer looks legitimate and has very similar functionality to the Windows version, but it does not have a digital certificate and will warn the user of that before installation. The installer executes the following actions.

  • Installs Kupay in folder /Applications/Kupay.app/Contents/MacOS/
  • Installs kupay_upgrade in folder /Applications/Kupay.app/Contents/MacOS/
  • Executes a postinstall script
    • Creates KupayDaemon folder in /Library/Application Support folder
    • Moves kupay_upgrade to the new folder
    • Moves com.kupay.pkg.wallet.plist to folder /Library/LaunchDaemons/
    • Runs the command launchctl load to load the plist without a restart
    • Runs kupay_upgrade in the background

Kupay is likely a copy of an open-source cryptocurrency wallet application, loads a legitimate-looking wallet program (fully functional), and its functionality is identical to the Windows Kupay.exe program.

The kupay_upgrade program calls its function CheckUpdate (which contains most of the logic functionality of the malware) and sends a POST to the C2 server with a connection named “Kupay Wallet 9.0.1 (Check Update Osx)” (Application Layer Protocol: Web Protocols [T1071.001]). If the C2 server returns a file, it is decoded and written to the victim’s folder /private/tmp/kupay_update with permissions set by the command chmod 700 (only the user can read, write, and execute) (Command and Scripting Interpreter [T1059]). Stage 2 is then launched, and the malware, kupay_upgrade, returns to sleeping and checking in with the C2 server at predetermined intervals (Application Layer Protocol: Web Protocols [T1071.001]).

The postinstall script has similar functionality to other AppleJeus scripts (Command and Scripting Interpreter: AppleScript [T1059.002]). It creates the KupayDaemon folder in /Library/Application Support folder and then moves kupay_upgrade to the new folder. It moves the property list (plist) file com.kupay.pkg.wallet.plist from the Installer package to the /Library/LaunchDaemons/ folder (Scheduled Task/Job: Launchd [T1053.004]). The script runs the command launchctl load to load the plist without a restart (Command and Scripting Interpreter [T1059]). But, since the LaunchDaemon will not run automatically after the plist file is moved, the postinstall script launches kupay_upgrade and runs it in the background (Create or Modify System Process: Launch Daemon [T1543.004]).

Payload

The Windows malware’s payload could not be downloaded since the C2 server is no longer accessible. Additionally, none of the open-source reporting for this sample contained copies of the payload. The Windows payload is likely similar in functionality to the macOS X stage 2 detailed below.

The stage 2 payload for the macOS X malware was decoded and analyzed. The stage 2 malware has a variety of functionalities. Most importantly, it checks in with a C2 and, after connecting to the C2, can send or receive a payload, read and write files, execute commands via the terminal, etc.

For more details on AppleJeus Version 4: Kupay Wallet, see MAR-10322463-4.v1.

AppleJeus Version 5: CoinGoTrade Introduction and Infrastructure

In early 2020, another version of the AppleJeus malware was identified. This time the malware was marketed and distributed by a legitimate-looking company called CoinGoTrade on their website coingotrade[.]com (Acquire Infrastructure: Domain [T1583.001]).

The domain CoinGoTrade[.]com resolved to IP address 198.54.114[.]175 from February 28, 2020, to January 23, 2021. The IP address is controlled by NameCheap Inc. (ASN 22612) and is located in Atlanta, GA. This IP address is in the same ASN for Dorusio[.]com and Ants2Whale[.]com.

The domain CoinGoTrade[.]com had a valid Sectigo SSL certificate (Obtain Capabilities: Digital Certificates [T1588.004]). The SSL certificate was “Domain Control Validated,” a weak security verification level that does not require validation of the owner’s identity or the actual business’s existence.

CoinGoTrade Application Analysis Windows Program

The Windows version of the malicious application is an MSI Installer. The installer appears to be legitimate and will execute the following actions.

  • Installs CoinGoTrade.exe in folder C:\Program Files (x86)\CoinGoTrade
  • Installs CoinGoTradeUpdate.exe in folder C:\Users\<username>\AppData\Roaming\CoinGoTradeSupport
  • Runs CoinGoTradeUpdate.exe

CoinGoTrade.exe loads a legitimate-looking cryptocurrency wallet platform with no signs of malicious activity and is a copy of an open-source cryptocurrency application.

CoinGoTradeUpdate.exe first installs itself as a service (Create or Modify System Process: Windows Service [T1543.003]), which will automatically start when any user logs on (Boot or Logon Autostart Execution [T1547]). The service is installed with a description stating it is an “Automatic CoinGoTrade Upgrade.” When launched, it collects the victim’s host information (System Owner/User Discovery [T1033]), combines the information in strings before exfiltration, and sends it to a C2 website (Exfiltration Over C2 Channel [T1041]).

macOS X Program

The macOS version of the malicious application is a DMG Installer. The installer looks legitimate and has very similar functionality to the Windows version, but it does not have a digital certificate and will warn the user of that before installation. The installer executes the following actions.

  • Installs CoinGoTrade in folder /Applications/CoinGoTrade.app/Contents/MacOS/
  • Installs CoinGoTradeUpgradeDaemon in folder /Applications/CoinGoTrade.app/Contents/MacOS/
  • Executes a postinstall script
    • Creates CoinGoTradeService folder in /Library/Application Support folder
    • Moves CoinGoTradeUpgradeDaemon to the new folder
    • Moves com.coingotrade.pkg.product.plist to folder /Library/LaunchDaemons/
    • Runs CoinGoTradeUpgradeDaemon in the background

The CoinGoTrade program is likely a copy of an open-source cryptocurrency wallet application and loads a legitimate-looking, fully functional wallet program).

The CoinGoTradeUpgradeDaemon program calls its function CheckUpdate (which contains most of the logic functionality of the malware) and sends a POST to the C2 server with a connection named “CoinGoTrade 1.0 (Check Update Osx)” (Application Layer Protocol: Web Protocols [T1071.001]). If the C2 server returns a file, it is decoded and written to the victim’s folder /private/tmp/updatecoingotrade with permissions set by the command chmod 700 (only the user can read, write, and execute) (Command and Scripting Interpreter [T1059]). Stage 2 is then launched, and the malware, CoinGoTradeUpgradeDaemon, returns to sleeping and checking in with the C2 server at predetermined intervals (Application Layer Protocol: Web Protocols [T1071.001]).

The postinstall script has similar functionality to the other scripts (Command and Scripting Interpreter: AppleScript [T1059.002]) and installs CoinGoTrade and CoinGoTradeUpgradeDaemon in folder /Applications/CoinGoTrade.app/Contents/MacOS/. It moves the property list (plist) file com.coingotrade.pkg.product.plist to the /Library/LaunchDaemons/ folder (Scheduled Task/Job: Launchd [T1053.004]). Because the LaunchDaemon will not run automatically after the plist file is moved, the postinstall script launches CoinGoTradeUpgradeDaemon and runs it in the background (Create or Modify System Process: Launch Daemon [T1543.004]).

Payload

The Windows malware’s payload could not be downloaded because the C2 server is no longer accessible. Additionally, none of the open-source reporting for this sample contained copies of the payload. The Windows payload is likely similar in functionality to the macOS X stage 2 detailed below.

The stage 2 payload for the macOS X malware was no longer available from the specified download URL. Still, a file was submitted to VirusTotal by the same user on the same date as the macOS X CoinGoTradeUpgradeDaemon. These clues suggest that the submitted file may be related to the macOS X version of the malware and the downloaded payload.

The file prtspool is a 64-bit Mach-O executable with a large variety of features that have all been confirmed as functionality. The file has three C2 URLs hardcoded into the file and communicates to these with HTTP POST multipart-form data boundary string. Like other HIDDEN COBRA malware, prtspool uses format strings to store data collected about the system and sends it to the C2s.

For more details on AppleJeus Version 5: CoinGoTrade, see MAR-10322463-5.v1.

AppleJeus Version 6: Dorusio Introduction and Infrastructure

In March 2020, an additional version of the AppleJeus malware was identified. This time the malware was marketed and distributed by a legitimate-looking company called Dorusio on their website, dorusio[.]com (Acquire Infrastructure: Domain [T1583.001]). Researchers collected samples for Windows and macOS X versions of the Dorusio Wallet (Develop Capabilities: Malware [T1587.001]). As of at least early 2020, the actual download links result in 404 errors. The download page has release notes with version revisions claiming to start with version 1.0.0, released on April 15, 2019.

The domain dorusio[.]com resolved to IP address 198.54.115[.]51 from March 30, 2020 to January 23, 2021. The IP address is controlled by NameCheap Inc. (ASN 22612) and is located in Atlanta, GA. This IP address is in the same ASN for CoinGoTrade[.]com and Ants2Whale[.]com.

The domain dorusio[.]com had a valid Sectigo SSL certificate (Obtain Capabilities: Digital Certificates [T1588.004]). The SSL certificate was “Domain Control Validated,” a weak security verification level that does not require validation of the owner’s identity or the actual business’s existence.

Dorusio Application Analysis Windows Program

The Windows version of the malicious application is an MSI Installer. The installer appears to be legitimate and will install the following two programs.

  • Installs Dorusio.exe in folder C:\Program Files (x86)\Dorusio
  • Installs DorusioUpgrade.exe in folder C:\Users\<username>\AppData\Roaming\DorusioSupport
  • Runs DorusioUpgrade.exe

The program, Dorusio.exe, loads a legitimate-looking cryptocurrency wallet platform with no signs of malicious activity and is a copy of an open-source cryptocurrency application.

The program DorusioUpgrade.exe first installs itself as a service (Create or Modify System Process: Windows Service [T1543.003]), which will automatically start when any user logs on (Boot or Logon Autostart Execution [T1547]). The service is installed with a description stating it “Automatic Dorusio Upgrade.” When launched, it collects the victim’s host information (System Owner/User Discovery [T1033]), combines the information in strings before exfiltration, and sends it to a C2 website (Exfiltration Over C2 Channel [T1041]).

macOS X Program

The macOS version of the malicious application is a DMG Installer. The installer looks legitimate and has very similar functionality to the Windows version, but it does not have a digital certificate and will warn the user of that before installation. The installer executes the following actions.

  • Installs Dorusio in folder /Applications/Dorusio.app/Contents/MacOS/
  • Installs Dorusio_upgrade in folder /Applications/Dorusio.app/Contents/MacOS/
  • Executes a postinstall script
    • Creates DorusioDaemon folder in /Library/Application Support folder
    • Moves Dorusio_upgrade to the new folder
    • Moves com.dorusio.pkg.wallet.plist to folder /Library/LaunchDaemons/
    • Runs Dorusio_upgrade in the background

The Dorusio program is likely a copy of an open-source cryptocurrency wallet application and loads a legitimate-looking wallet program (fully functional). Aside from the Dorusio logo and two new services, the wallet appears to be the same as the Kupay Wallet. This application seems to be a modification of the open-source cryptocurrency wallet Copay distributed by Atlanta-based company BitPay.

The Dorusio_upgrade program calls its function CheckUpdate (which contains most of the logic functionality of the malware) and sends a POST to the C2 server with a connection named “Dorusio Wallet 2.1.0 (Check Update Osx)” (Application Layer Protocol: Web Protocols [T1071.001]). If the C2 server returns a file, it is decoded and written to the victim’s folder /private/tmp/Dorusio_update with permissions set by the command chmod 700 (only the user can read, write, and execute) (Command and Scripting Interpreter [T1059]). Stage 2 is then launched, and the malware, Dorusio_upgrade, returns to sleeping and checking in with the C2 server at predetermined intervals (Application Layer Protocol: Web Protocols [T1071.001]).

The postinstall script has similar functionality to other AppleJeus scripts (Command and Scripting Interpreter: AppleScript [T1059.002]). It creates the DorusioDaemon folder in /Library/Application Support folder and then moves Dorusio_upgrade to the new folder. It moves the property list (plist) file com.dorusio.pkg.wallet.plist from the Installer package to the /Library/LaunchDaemons/ folder (Scheduled Task/Job: Launchd [T1053.004]). Because the LaunchDaemon will not run automatically after the plist file is moved, the postinstall script launches Dorusio_upgrade and runs it in the background (Create or Modify System Process: Launch Daemon [T1543.004]).

Payload

Neither the payload for the Windows nor macOS X malware could be downloaded; the C2 server is no longer accessible. The payloads are likely similar in functionality to the macOS X stage 2 from CoinGoTrade and Kupay Wallet, or the Windows stage 2 from Union Crypto.

For more details on AppleJeus Version 6: Dorusio, see MAR-10322463-6.v1.

AppleJeus 4, 5, and 6 Installation Conflictions

If a user attempts to install the Kupay Wallet, CoinGoTrade, and Dorusio applications on the same system, they will encounter installation conflicts.

If Kupay Wallet is already installed on a system and the user tries to install CoinGoTrade or Dorusio:

  • Pop-up windows appear, stating a more recent version of the program is already installed.

If CoinGoTrade is already installed on a system and the user attempts to install Kupay Wallet:

  • Kupay.exe will be installed in the C:\Program Files (x86)\CoinGoTrade\ folder.
  • All CoinGoTrade files will be deleted.
  • The folders and files contained in the C:\Users\<username>\AppData\Roaming\CoinGoTradeSupport will remain installed.
  • KupayUpgrade.exe is installed in the new folder C:\Users\<username>\AppData\Roaming\KupaySupport.

If Dorusio is already installed on a system and the user attempts to install Kupay Wallet:

  • Kupay.exe will be installed in the C:\Program Files (x86)\Dorusio\ folder.
  • All Dorusio.exe files will be deleted.
  • The folders and files contained in C:\Users\<username>\AppData\Roaming\DorusioSupport will remain installed.
  • KupayUpgrade.exe is installed in the new folder C:\Users\<username>\AppData\Roaming\KupaySupport.
AppleJeus Version 7: Ants2Whale Introduction and Infrastructure

In late 2020, a new version of AppleJeus was identified called “Ants2Whale.” The site for this version of AppleJeus is ants2whale[.]com (Acquire Infrastructure: Domain [T1583.001]). The website shows a legitimate-looking cryptocurrency company and application. The website contains multiple spelling and grammar mistakes indicating the creator may not have English as a first language. The website states that to download Ants2Whale, a user must contact the administrator, as their product is a “premium package” (Develop Capabilities: Malware [T1587.001]).

The domain ants2whale[.]com resolved to IP address 198.54.114[.]237 from September 23, 2020, to January 22, 2021. The IP address is controlled by NameCheap, Inc. (ASN 22612) and is located in Atlanta, GA. This IP address is in the same ASN for CoinGoTrade[.]com and Dorusio[.]com.

The domain ants2whale[.]com had a valid Sectigo SSL certificate (Obtain Capabilities: Digital Certificates [T1588.004]). The SSL certificate was “Domain Control Validated,” a weak security verification level that does not require validation of the owner’s identity or the actual business’s existence.

Ants2Whale Application Analysis Windows Program

As of late 2020, the Windows program was not available on VirusTotal. It is likely very similar to the macOS X version detailed below.

macOS X Program

The macOS version of the malicious application is a DMG Installer. The installer looks legitimate and has very similar functionality to the Windows version, but it does not have a digital certificate and will warn the user of that before installation. The installer executes the following actions.

  • Installs Ants2Whale in folder /Applications/Ants2whale.app/Contents/MacOS/Ants2whale
  • Installs Ants2WhaleHelper in folder /Library/Application Support/Ants2WhaleSupport/
  • Executes a postinstall script
    • Moves com.Ants2whale.pkg.wallet.plist to folder /Library/LaunchDaemons/
    • Runs Ants2WhaleHelper in the background

The Ants2Whale and Ants2WhaleHelper programs and the postinstall script function almost identically to previous versions of AppleJeus and will not be discussed in depth in this advisory.

For more details on AppleJeus Version 7: Ants2Whale, see MAR-10322463-7.v1.

ATT&CK Profile

Figure 2 and table 2 provide summaries of the MITRE ATT&CK techniques observed.

Figure 2: MITRE ATT&CK enterprise techniques used by AppleJeus

 

Table 2: MITRE ATT&CK techniques observed

Tactic Title Technique ID Technique Title Resource Development [TA0042] T1583.001 Acquire Infrastructure: Domain Resource Development [TA0042] T1583.006 Acquire Infrastructure: Web Services Resource Development [TA0042] T1587.001 Develop Capabilities: Malware Resource Development [TA0042] T1588.003 Obtain Capabilities: Code Signing Certificates Resource Development [TA0042] T1588004 Obtain Capabilities: Digital Certificates Initial Access [TA0001] T1566.002 Phishing: Spearphishing Link Execution [TA0002] T1059 Command and Scripting Interpreter Execution [TA0002] T1059.002 Command and Scripting Interpreter: AppleScript Execution [TA0002] T1204.002 User Execution: Malicious File Persistence [TA0003] T1053.004 Scheduled Task/Job: Launchd Persistence [TA0003] T1543.004 Create or Modify System Process: Launch Daemon Persistence [TA0003] T1547 Boot or Logon Autostart Execution Privilege Escalation [TA0004] T1053.005 Scheduled Task/Job: Scheduled Task Defense Evasion [TA0005] T1027 Obfuscated Files or Information Defense Evasion [TA0005] T1548 Abuse Elevation Control Mechanism Defense Evasion [TA0005] T1564.001 Hide Artifacts: Hidden Files and Directories Discovery [TA0007] T1033 System Owner/User Discovery Exfiltration [TA0010] T1041 Exfiltration Over C2 Channel Command and Control [TA0011] T1071.001

Application Layer Protocol: Web Protocols

Command and Control [TA0011] T1573 Encrypted Channel Command and Control [TA0011] T1573.001 Encrypted Channel: Symmetric Cryptography MitigationsCompromise Mitigations

Organizations that identify AppleJeus malware within their networks should take immediate action. Initial actions should include the following steps.

  • Contact the FBI, CISA, or Treasury immediately regarding any identified activity related to AppleJeus. (Refer to the Contact Information section below.)
  • Initiate your organization’s incident response plan.
  • Generate new keys for wallets, and/or move to new wallets.
  • Introduce a two-factor authentication solution as an extra layer of verification.  
  • Use hardware wallets, which keep the private keys in a separate, secured storage area.
  • To move funds out off a compromised wallet:
    • Do not use the malware listed in this advisory to transfer funds, and  
    • Form all transactions offline and then broadcast them to the network all at once in a short online session, ideally prior to the attacker accessing them.
  • Remove impacted hosts from network.
  • Assume the threat actors have moved laterally within the network and downloaded additional malware.
  • Change all passwords to any accounts associated with impacted hosts.
  • Reimage impacted host(s).  
  • Install anti-virus software to run daily deep scans of the host.
  • Ensure your anti-virus software is setup to download the latest signatures daily.
  • Install a Host Based Intrusion Detection (HIDS)-based software and keep it up to date.
  • Ensure all software and hardware is up to date, and all patches have been installed.
  • Ensure network-based firewall is installed and/or up to date.
  • Ensure the firewall’s firmware is up to date.
Pro-Active Mitigations

Consider the following recommendations for defense against AppleJeus malware and related activity.

Cryptocurrency Users
  • Verify source of cryptocurrency-related applications.
  • Use multiple wallets for key storage, striking the appropriate risk balance between hot and cold storage.
  • Use custodial accounts with multi-factor authentication mechanisms for both user and device verification.
  • Patronize cryptocurrency service businesses that offer indemnity protections for lost or stolen cryptocurrency.
  • Consider having a dedicated device for cryptocurrency management.
Financial Service Companies Cryptocurrency Businesses All Organizations
  • Incorporate IOCs identified in CISA’s Malware Analysis Reports on https://us-cert.cisa.gov/northkorea into intrusion detection systems and security alert systems to enable active blocking or reporting of suspected malicious activity.
  • See table 3 below, which provides a summary of preventative ATT&CK mitigations based on observed techniques.

Table 3: MITRE ATT&CK mitigations based on observed techniques

Mitigation Description User Training [M1017] Train users to identify social engineering techniques and spearphishing emails. User Training [M1017] Provide users with the awareness of common phishing and spearphishing techniques and raise suspicion for potentially malicious events. User Account Management [M1018] Limit privileges of user accounts and remediate Privilege Escalation vectors so only authorized administrators can create new Launch Daemons. User Account Management [M1018] Limit privileges of user accounts and remediate Privilege Escalation vectors so only authorized administrators can create scheduled tasks on remote systems. SSL/TLS Inspection [M1020] Use SSL/TLS inspection to see encrypted sessions’ contents to look for network-based indicators of malware communication protocols. Restrict Web-Based Content [M1021] Determine if certain websites that can be used for spearphishing are necessary for business operations and consider blocking access if the activity cannot be monitored well or poses a significant risk. Restrict Web-Based Content [M1021] Block Script extensions to prevent the execution of scripts and HTA files that may commonly be used during the exploitation process. Restrict Web-Based Content [M1021] Employ an adblocker to prevent malicious code served up through ads from executing. Restrict File and Directory Permissions [M1022] Prevent all users from writing to the /Library/StartupItems directory to prevent any startup items from getting registered since StartupItems are deprecated. Privileged Account Management [M1026] When PowerShell is necessary, restrict PowerShell execution policy to administrators. Be aware that there are methods of bypassing the PowerShell execution policy, depending on environment configuration. Privileged Account Management [M1026] Configure the Increase Scheduling Priority option only to allow the Administrators group the rights to schedule a priority process. Operating System Configuration [M1028] Configure settings for scheduled tasks to force tasks to run under the authenticated account’s context instead of allowing them to run as SYSTEM. Network Intrusion Prevention [M1031] Use network intrusion detection and prevention systems that use network signatures to identify traffic for specific adversary malware and mitigate activity at the network level. Execution Prevention [M1038] Use application control tools where appropriate. Execution Prevention [M1038] Use application control tools to prevent the running of executables masquerading as other files. Behavior Prevention on Endpoint [M1040] Configure endpoint (if possible) to block some process injection types based on common sequences of behavior during the injection process. Disable or Remove Feature or Program [M1042] Disable or remove any unnecessary or unused shells or interpreters. Code Signing [M1045] Where possible, only permit the execution of signed scripts. Code Signing [M1045] Require that a trusted developer I.D. sign all AppleScript before being executed to subject AppleScript code to the same scrutiny as other .app files passing through Gatekeeper. Audit [M1047] Audit logging for launchd events in macOS can be reviewed or centrally collected using multiple options, such as Syslog, OpenBSM, or OSquery. Audit [M1047] Toolkits like the PowerSploit framework contain PowerUp modules that can be used to explore systems for permission weaknesses in scheduled tasks that could be used to escalate privileges. Antivirus/Antimalware [M1049] Use an antivirus program to quarantine suspicious files automatically.

 

Contact Information

Recipients of this report are encouraged to contribute any additional information that they may have related to this threat.

For any questions related to this report or to report an intrusion and request resources for incident response or technical assistance, please contact:

References Revisions
  • February 17, 2021: Initial Version

This product is provided subject to this Notification and this Privacy & Use policy.

Categories: US-CERT Feed

Pages